
Introduction Approaches Performance Summary

I/O Threads to Reduce Checkpoint Blocking
for an EM Solver on Blue Gene/P and Cray XK6

Jing Fu∗†, Misun Min¶, Robert Latham¶, Christopher Carothers†

†Department of Computer Science, Rensselaer Polytechnic Institute
¶ Mathematics and Computer Science Division, Argonne National Laboratory

June 29, 2012

1/ 27

Introduction Approaches Performance Summary

Presentation Outline

Introduction

Approaches

Performance and Analysis

Summary

2/ 27

Introduction Approaches Performance Summary

Solver systems and checkpointing

Parallel Partitioned Solver Systems are being applied to tackle
hard problems in science & engineering, e.g. PHASTA (CFD),
Nek5000 (CFD), NekCEM (CEM)

These applications scale well on massively parallel platforms
(strong scaling on 100,000s of cores)

Traditional I/O doesn’t scale as well, may suffer at large scale

In this talk, we focus on the use of I/O threads for an EM solver
(NekCEM) checkpoint on BG/P and Cray XK6

3/ 27

Introduction Approaches Performance Summary

I/O software stack of a typical HPC system

4/ 27

Introduction Approaches Performance Summary

Bursty I/O

Figure: I/O workload in ANL, image courtesy of Rob Ross

Pattern: X steps comp. → checkpoint→ X steps comp. ...

Core assumption: synchronized writes among all processors
(lack of well-supported asynchronous I/O on supercomputers)

5/ 27

Introduction Approaches Performance Summary

Checkpoint File Structure

(a) Typical File Structure (b) NekCEM File Structure

6/ 27

Introduction Approaches Performance Summary

Related Work and Our Objective

Related Work

Scalable Checkpoint/Restart, Lawrence Livermore National Lab

ADaptable IO System, Oak Ridge National Lab

I/O Delegate Cache System, Northwestern University

Design Factors

design space; platform dependency; application transparency

Our Objective

Goal: performance at scale

user space, portable, reasonably generic

7/ 27

Introduction Approaches Performance Summary

Previous work: from coIO to naive rbIO

8/ 27

Introduction Approaches Performance Summary

from coIO to naive rbIO

9/ 27

Introduction Approaches Performance Summary

Method 1: Completely split rbIO

dedicated I/O writers

overlap computation
and I/O

lose a small portion of
computing resources

other problems?

10/ 27

Introduction Approaches Performance Summary

Potential limitations with completely split rbIO

break collective operation optimizations on Blue Gene systems

collective operations on subcomm go through torus not tree

10× slower on torus

Table: The time (in µs) MPI Allreduce spends on BG/P

#nodes Time on Tree Time on Torus Ratio
4096 7.68 55.65 7.24
8192 7.72 61.88 8.01
16384 8.19 67.66 8.26

performance impact on applications: 1 - 2% time spent on
collective now means 10 -20%

can be verified by running application with tree network off on
BG/P

11/ 27

Introduction Approaches Performance Summary

Method 2: rbIO with I/O daemon threads

global communicator

simple control flow

threading
supercomputers?

12/ 27

Introduction Approaches Performance Summary

Potential limitations of threading rbIO

BG/P has limited threading capability

default to one, up to three threads per core

does not support automatic thread switching

have to use hardware thread in SMP mode

experiment for demo purpose

load balancing issue for those that fully support threads, e.g.
Cray XK6?

13/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Blue Gene/P
Blue Gene/P Spec

163,840 cores, 80 TB RAM, 557 teraflops (“Intrepid”@ANL)

GPFS/PVFS, 128 file servers connected to 16 DDN 9900, 10 PB

pset (1 ION to 64 4-core CN), 640 ION to 128 file servers by
10GB/s Myricom switch

4MB block size, read peak 60 GB/s, write peak 47 GB/s

Experiment Setup

3D cylindrical waveguide simulation for different meshes

(grid points, total size) = {(143M, 13GB), (275M, 26 GB),
(550M, 52 GB)}
Weak scaling tests

14/ 27

Introduction Approaches Performance Summary

Overview of the Blue Gene system

15/ 27

Introduction Approaches Performance Summary

NekCEM I/O on BG/P: bandwidth

 0

 20

 40

 60

 80

 100

8192 16384 32768

B
an

d
w

id
th

(G
B

/s
)

Number of processors

Write performance with NekCEM on Intrepid GPFS

coIO, nf=1
coIO, nf=np/64

rbIO, nf=nw=np/64
threaded rbIO, raw

threaded rbIO, perceived

16/ 27

Introduction Approaches Performance Summary

NekCEM I/O on BG/P: overall time

 0

 5

 10

 15

 20

 25

8192 16384 32768

T
im

e
(s

ec
o
n
d
s)

Number of processors

Compute and I/O time with NekCEM on Intrepid (w/ GPFS)

coIO, nf=1

coIO, nf=np/64

rbIO, nf=nw=np/64

threaded rbIO

compute time

17/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray XK6

Cray XK6 Spec

299,008 cores (AMD Opteron Interlagos, on Cray Linux
microkernel), 598 TB RAM, 2.63 petaflops (“Jaguar”@ORNL)

Lustre, 192 OSS servers to 96 DDN 9900s (7 RAID-6
(8+2)/OSS), 10 PB

4MB block size, peak 120 GB/s

18/ 27

Introduction Approaches Performance Summary

Overview of the Cray system

Figure: Architecture diagram of Jaguar@ORNL, image courtesy of Rob
Ross

19/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray: bandwidth

 0

 20

 40

 60

 80

 100

8192 16384 32768

B
an

d
w

id
th

(G
B

/s
)

Number of processors

Write performance with NekCEM on Jaguar Lustre

coIO, nf=1
coIO, nf=np/64

rbIO, nf=nw=np/64
threaded rbIO, raw

threaded rbIO, perceived

20/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray: overall time

 0

 5

 10

 15

 20

 25

8192 16384 32768

T
im

e
(s

ec
o
n
d
s)

Number of processors

Compute and I/O time with NekCEM on Jaguar (w/ Lustre)

coIO, nf=1

coIO, nf=np/64

rbIO, nf=nw=np/64

threaded rbIO

compute time

21/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray: profiling compute time

 9

 9.5

 10

 10.5

 11

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e(
se

co
n

d
s)

Processor Ranks

Compute time distribution for NekCEM
 with 16,384 processors on Jaguar

rbIO

threaded rbIO

22/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray: Threaded rbIO Timing Analysis

23/ 27

Introduction Approaches Performance Summary

NekCEM I/O on Cray: Speedup Analysis

Speedupprod =
TcoIO + TcoIO

comp

TtrbIO + T trbIO
comp

=
XcoIO ∗ tcoIO

comp + fcp ∗ tcoIO
comp

XtrbIO ∗ ttrbIO
comp + fcp ∗ ttrbIO

comp

=
XcoIO + fcp

XtrbIO + fcp
∗ 1

1 + δ
,

where X is the number of computation steps that a checkpoint time
equals to, fcp denotes number of computation steps between two
checkpoints, and δ is the overhead of a single step computation with
threaded rbIO compared with nonthreaded I/O (i.e., ttrbIO

comp =
(1 + δ) ∗ tcoIO

comp).

Roughly 50% speedup on 32K procs Jaguar.

24/ 27

Introduction Approaches Performance Summary

Summary

Application-transparent optimizations (MPI-IO collective) with
good tuning practice can provide decent performance on some
platforms

Application-level optimizations exploit application-specific
information and provide tuning options (nf, ng, I/O thread) and
good performance on most platforms

Data staging (on RAM, RAM disk, SSD) helps ease out pressure
of bursty I/O for file system, trending technique in design of
storage system for Exascale era

What happens on Mira and Blue Waters?

25/ 27

Introduction Approaches Performance Summary

Collaborators
Ning Liu, Christopher D. Carothers
Department of Computer Science
Rensselaer Polytechnic Institute

Onkar Sahni, Min Zhou, Mark Shephard
Scientific Computation Research Center (SCOREC)

Rensselaer Polytechnic Institute

Michel Rasquin, Kenneth Jansen
Aerospace Engineering Sciences
University of Colorado Boulder

Misun Min, Paul Fischer, Rob Latham, Rob Ross
Mathematics and Computer Science Division

Argonne National Laboratory

26/ 27

Introduction Approaches Performance Summary

Questions?

27/ 27

	Introduction
	Approaches
	Performance
	Summary

